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Polycyclische Peptidantibiotika, deren
Aminos�uren durch eine Thioether-
gruppe verkn�pft sind, wie beispiels-
weise Lanthionine, werden als Lanti-
biotika bezeichnet.[1] Lantibiotika wer-
den im Unterschied zu anderen Peptid-
antibiotika ribosomal synthetisiert und
posttranslational durch Enzyme modi-
fiziert. Biologisch aktive Polypeptide
enthalten mehrere Sulfidbr�cken,
ebenso wie andere modifizierte Reste,
beispielsweise 2,3-Didehydroaminos�u-
ren.[2] Bisherige Studien haben gezeigt,
dass die Biosynthese der Lantibiotika
�ber Vorl�uferpeptide verl�uft. Eine
Vielzahl von Enzymen modifiziert diese
Polypeptide an spezifischen Serin-,
Threonin- und Cysteinresten. [3–6] Diese
Studien erm0glichten die gentechnolo-
gische Konstruktion und Weiterent-
wicklung verschiedener Lantibiotika-
Analoga (z. B. durch zielgerichtete Mu-
tagenese). Beispielsweise sind viele
Analoga von Epidermin (ein hoch
wirksames Medikament gegen Akne)
und Nisin (ein wichtiger Konservie-
rungsstoff f�r Lebensmittel) be-
kannt.[7–9]

Lantibiotika vom Typ A, wie Epi-
dermin und Nisin, sind l�ngliche Am-
phiphile, die auf Gram-positive Bakte-
rien wirken, indem sie an die Zell-
wandvorstufe Lipid II binden. Dabei
bilden sie eine spezifische, f�r Ionen
durchl�ssige Membranpore, und sie
hemmen die Zellwandbiosynthese.[10,11]

Typ-B-Lantibiotika, globul�re Polypep-
tide mit stark gespannten Sulfidringen,
greifen dagegen in spezifische enzyma-
tische Prozesse ein.[12]

1988 wurde das erste Strukturgen
eines Lantibiotikums entdeckt, und die
Grunds�tze der Biosynthese von Lanti-
biotika durch posttranslationale Modi-
fikation von Vorl�uferproteinen wurden
am Beispiel von Epidermin aufgezeigt.[1]

Studien �ber den Biosynthese-Genclus-
ter des Nisins folgten im Jahr 1989 (siehe
Lit. [3,4, 12]).

Ein weiterer H0hepunkt der Lanti-
biotikaforschung war die Isolierung,
Sequenzierung und massenspektrome-
trische Charakterisierung der unter-
schiedlichen Pr�peptide, die w�hrend
der Biosynthese des Lantibiotikums
Pep5 auftreten.[13] Das Vorl�uferpeptid
pr�-Pep5 beispielsweise ist insgesamt
sechsfach dehydratisiert (an vier
Threonin- und zwei Serinresten).
G�nzlich unmodifiziertes pr�-Pep5 so-
wie pr�-Pep5 mit drei Sulfidringen und
zwei a,b-Didehydroaminos�uren wur-
den ebenfalls isoliert.

Die Kristallstruktur des Metalloen-
zyms NisC wurde k�rzlich durch R0nt-
genbeugung aufgekl�rt.[14] Die Cyclase
NisC katalysiert die Bildung des Lanti-
biotikums Nisin, indem sie im dehydra-
tisierten Vorl�uferprotein NisA (57
Aminos�uren) mehrere Sulfidbr�cken
einf�hrt (Abbildung 1). Die Charakte-
risierung des dehydratisierten Vorl�u-
ferproteins von Nisin durch van der
Donk und Mitarbeiter[14] st�tzte die Er-
gebnisse von Kuipers et al.[15] �ber die-
ses Zwischenprodukt der Lantibiotika-
Biosynthese.

In den vergangenen 15 Jahren wur-
den die meisten R�tsel f�r Epidermin,
Pep5, Nisin und andere Lantibiotika

gel0st. Sowohl das Icosapeptid Epider-
min als auch Mersacidin enthalten eine
zus�tzliche, untypische Modifikation
infolge einer enzymatischen oxidativen
Decarboxylierung des C-terminalen
Cysteinrests. Dieser Prozess findet noch
vor der enzymkatalysierten Bildung der
Sulfidringe statt. Das oxidierende
Flavoenzym EpiD[16] konnte als erstes
Enzym der Lantibiotika-Biosynthese in
Reinform exprimiert und isoliert wer-
den. EpiD wurde ausgiebig in vitro
an Peptidylcystein-Bibliotheken mit
HPLC-MS getestet.[17] Interessanter-
weise oxidiert EpiD schon kurze Di-
peptidylcysteine, was die Synthese von
Peptiden mit ungew0hnlichen amidier-
ten C-Termini und S-(2-Aminovinyl)-
cystein-Ringen m0glich machte. Außer-
dem f�hrte gerade dieses Spezialgebiet
der Lantibiotika-Forschung zur Entde-
ckung von verwandten Flavoenzymen,
die durch R0ntgenstrukturanalysen und
In-vitro-Studien untersucht werden
konnten.[18,19]

Im Ausblick eines Aufsatzes �ber
Lantibiotika aus dem Jahre 1991 heißt
es:[2] „Wir wissen noch nicht, wodurch
die stereospezifische Addition der Cys-
tein-SH-Gruppe an die Doppelbindun-
gen der a,b-Didehydroaminos"uren ka-
talysiert wird.“ Seitdem haben verschie-
dene Arbeitsgruppen von Peptidchemi-
kern gezeigt, dass Lantibiotika mit der
korrekten Konfiguration durch biomi-
metische Thioethercyclisierungen von
synthetischen Peptiden mit a,b-Dide-
hydroaminos�uren und Cysteinen er-
halten werden.[12, 20] Daher sollten
nichtenzymatische, spontane Cyclisie-
rungsschritte an der Lantibiotika-Bio-
synthese beteiligt sind. Van der Donk
und Mitarbeiter haben in ihrem aktu-
ellsten Bericht �ber Struktur und Me-
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chanismus der Lantibiotika-Cyclase in
der Biosynthese von Nisin eine detail-
lierte Beschreibung der enzymatischen
Cyclisierung durch NisC geliefert.[14]

Zun�chst katalysiert das Enzym die
Bildung aller f�nf Sulfidbr�cken des
Nisins, obwohl sich diese bez�glich der
Ringl�nge und des Elektrophils (2,3-
Didehydroalanin (Dha) oder 2,3-Dide-
hydrobutyrin (Dhb)) unterscheiden.
Besonders bemerkenswert ist daran,
dass eine Cyclisierung von dehydrati-
siertem Pr�nisin auch in vitro beobach-
tet werden konnte.[14] Bis dahin war man
der Iberzeugung, dass das Signalpeptid
von NisA entscheidend f�r die Erken-
nung von dehydratisiertem Pr�nisin als
Substrat durch NisC ist. Der erste ex-
perimentelle Beweis f�r die Beteiligung
solcher LanC-Proteine an der Regulie-
rung der Cyclisierung gelang Sahl und
Mitarbeiter im Jahr 1995 anhand des
Biosynthesesystems von Pep5.[21] Die
Auswirkungen von Mutationen im Si-
gnalpeptid auf die Biosynthese des
Lantibiotikums Pep5 wurden sp�ter be-
schrieben.[22] Vergleichbare Experimen-
te folgten f�r NisC. Interessanterweise
erzeugt die Lantibiotika-Cyclase von
Subtilin, SpaC, aus dehydratisiertem
Pr�nisin auch Nisin, was zus�tzlich daf�r
spricht, dass Dehydratisierung und
Cyclisierung bei Typ-A-Lantibiotika
unabh�ngige Prozesse sind. (Dies gilt

nicht f�r Typ-B-Lantibiotika, siehe un-
ten.)

Die Kristallstruktur des Zinkenzyms
NisC zeigt ein Protein mit insgesamt 14
a-Helices. Sieben dieser Helices bilden
die innere Schicht einer Toroidstruktur
(a/a-Fass), in deren Zentrum sich das
Zinkion befindet. Dieses Ion ist tetra-
edrisch durch zwei Cysteinreste, einen
Histidinrest und ein Molek�l Wasser
koordiniert (Abbildung 2).[14]

Khnlichkeiten von NisC zur Farne-
syltransferase und zu anderen Zinkpro-
teinen, die Thiolalkylierungen kataly-
sieren, wurden angesprochen. Aller-
dings unterscheiden sich die von van
der Donk und Mitarbeitern beschriebe-
nen Enzyme[23] topologisch von der a/a-

Fass-Struktur des NisC und Enzymen,
die sie selbst diskutiert haben.[14] (Zur
Verdeutlichung siehe die Ibersicht von
Wendt und Schulz.[24]) Die Autoren
wiesen auch auf eine interessante Ho-
mologie unter LanC-artigen Proteinen
in S�ugern hin (20–25% Sequenziden-
tit�t, konservierte Liganden um das
Zinkion, eine Base im aktiven Zentrum,
ausgedehnte Dom�nen). Diese Proteine
katalysieren m0glicherweise eine post-
translationale Cysteinmodifikation an
einem noch unbekannten Protein.

Zur Katalyse der Cyclisierung im
neutralen pH-Bereich muss NisC die
Thiolgruppe des Cysteins zun�chst de-
protonieren, um die nucleophile Addi-
tion an a,b-unges�ttigte Aminos�uren

Abbildung 1. Biosynthese von Nisin: Die Sequenzen von Pr/nisin (NisA) und dem dehydratisierten Pr/peptid von Nisin (Dha=2,3-Didehydroala-
nin, Dhb=2,3-Didehydrobutyrin) zeigen die Bildung der Thioetherringe A bis E; dieser Prozess wird durch die Cyclase NisC katalysiert. Danach
wird das Signalpeptid (MSTKDFNLDLVSVSKKDSGASPR) durch die Peptidase NisP abgespalten, und das aktive Lantibiotikum Nisin entsteht.

Abbildung 2. Thioether-Ringbildung f*r das Segment Thr-Pro-Gly-Cys von Pr/nisin (NisA) *ber
das dehydratisierte Pr/nisin als Substrat. Das Schwefelatom von l-Cystein ((R)-Cystein) koordi-
niert nach wie vor an Zn2+, das durch die Reste His331, Cys330 und Cys284 der Cyclase NisC
komplexiert ist. (Wasserstoffatome sind nicht gezeigt; adaptiert aus Lit. [14].)
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durch Aktivierung als Thiolat zu be-
schleunigen. Interessanterweise bildet
sich bei der zur Cyclisierung f�hrenden
anti-Addition des Cysteinthiolats an das
b-Kohlenstoffatom von Dha oder Z-
Dhb ein Enolat-Zwischenprodukt (Ab-
bildung 2). Da dieses Enolat am a-
Kohlenstoffatom protoniert wird,
kommt es zur Inversion der Konfigura-
tion am a-Kohlenstoffatom im Ver-
gleich zum urspr�nglichen l-Threonin.
Das l-Cystein beh�lt hingegen seine R-
Konfiguration im gebildeten (2S,3S,6R)-
b-Methyllanthionin (MeLan) bei.[25]

Die LanC-Enzyme bestimmen nicht
nur die Regio- und Stereoselektivit�t,
sondern auch die Richtung der Sulfid-
ringbildung: F�r Typ-A-Lantibiotika
erfolgt diese immer vom N-Terminus
zum C-Terminus; das C-terminale Cys-
tein wird also mit der Dehydroamino-
s�ure Dha oder Dhb am N-Terminus
verbunden. Allerdings werden manche
Sulfidbr�cken in Typ-B-Lantibiotika
vom N-terminalen Cystein zur C-termi-
nalen Dehydroaminos�ure gekn�pft.
Van der Donk und Mitarbeiter haben
den grundlegenden Unterschied zwi-
schen beiden M0glichkeiten experi-
mentell gezeigt. Die Ringbildung kann
demnach entweder �ber ein endocycli-
sches (Typ A) oder �ber ein exocycli-
sches Enolat (Typ B) verlaufen.[12,14]

LanC-Enzyme sorgen in der Natur auch
daf�r, dass die Cyclisierungen von Lan-
thioninen �hnlich schnell verlaufen wie
diejenigen von b-Methyllanthioninen;
in biomimetischen Modellstudien wur-
den hier Unterschiede von mehreren
Gr0ßenordnungen ermittelt.[20]

Große difunktionelle Enzyme
(LanM) von unbekannter Struktur sind
an der Dehydratisierung und Cyclisie-
rung der kompakten, globul�ren Typ-B-
Lantibiotika beteiligt. Das Enzym
LanM unterscheidet sich von LanB und
LanC f�r die Biosynthese der Typ-A-
Lantibiotika (siehe Lit. [12]). Diese
Enzyme ben0tigen Adenosintriphos-
phat (ATP) und Mg2+, zeigen aber keine
Homologie zu LanB und nur 20–27%
Sequenzhomologie zu LanC-Proteinen.

Der Mechanismusvorschlag f�r
NisC (Abbildung 2) beruht nicht auf der
Kristallstruktur eines Substrat-Enzym-
Komplexes, sondern auf einem Do-
cking-Experiment. Dazu wurde der 13-
gliedrige B-Ring von Nisin verwendet,

der aus Pro9, Gly10 und MeLan besteht.
NMR-spektroskopische Untersuchun-
gen haben gezeigt, dass diese drei
Komponenten eine b-Schleife bilden.
Nichtsdestotrotz lieferten die Modell-
studien erste Hinweise auf den Mecha-
nismus der Cyclisierung, die zur Bildung
von Sulfidringen mit vier (Ring B) bis
sieben Aminos�uren in der flachen
Substratmulde von NisC f�hrt. Das po-
sitiv geladene Signalpeptid des dehy-
dratisierten Pr�nisins scheint dabei spe-
zifisch in einer negativ geladenen Fur-
che von NisC zu binden.

Dennoch ist die genaue Rolle des
Signalpeptids noch nicht hinreichend
aufgekl�rt, ebenso wie der Ablauf der
Ringbildung bei der Biosynthese des
Nisins. Da die Pr�peptide der Lantibio-
tika und ihrer Derivate durch chemische
Peptidsynthese zug�nglich sind,[26]

k0nnten chemische und biochemische
Studien diese Frage beantworten. Auch
k0nnen dadurch neue Strategien f�r die
Synthese cyclischer Peptide entwickelt
werden, die bisher nur schwer oder gar
nicht herstellbar waren. Die Lantibioti-
ka-Forschung bleibt ein anspruchvolles
und faszinierendes T�tigkeitsfeld f�r die
Entdeckung von Biosynthesemechanis-
men, das Chemiker und Biochemiker
ebenso wie Mikrobiologen und Protein-
forscher in seinen Bann zieht.
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